Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.370
1.
Front Immunol ; 15: 1380732, 2024.
Article En | MEDLINE | ID: mdl-38690283

Haemophilus parainfluenzae is a Gram-negative opportunist pathogen within the mucus of the nose and mouth without significant symptoms and has an ability to cause various infections ranging from ear, eye, and sinus to pneumonia. A concerning development is the increasing resistance of H. parainfluenzae to beta-lactam antibiotics, with the potential to cause dental infections or abscesses. The principal objective of this investigation is to utilize bioinformatics and immuno-informatic methodologies in the development of a candidate multi-epitope Vaccine. The investigation focuses on identifying potential epitopes for both B cells (B lymphocytes) and T cells (helper T lymphocytes and cytotoxic T lymphocytes) based on high non-toxic and non-allergenic characteristics. The selection process involves identifying human leukocyte antigen alleles demonstrating strong associations with recognized antigenic and overlapping epitopes. Notably, the chosen alleles aim to provide coverage for 90% of the global population. Multi-epitope constructs were designed by using suitable linker sequences. To enhance the immunological potential, an adjuvant sequence was incorporated using the EAAAK linker. The final vaccine construct, comprising 344 amino acids, was achieved after the addition of adjuvants and linkers. This multi-epitope Vaccine demonstrates notable antigenicity and possesses favorable physiochemical characteristics. The three-dimensional conformation underwent modeling and refinement, validated through in-silico methods. Additionally, a protein-protein molecular docking analysis was conducted to predict effective binding poses between the multi-epitope Vaccine and the Toll-like receptor 4 protein. The Molecular Dynamics (MD) investigation of the docked TLR4-vaccine complex demonstrated consistent stability over the simulation period, primarily attributed to electrostatic energy. The docked complex displayed minimal deformation and enhanced rigidity in the motion of residues during the dynamic simulation. Furthermore, codon translational optimization and computational cloning was performed to ensure the reliability and proper expression of the multi-Epitope Vaccine. It is crucial to emphasize that despite these computational validations, experimental research in the laboratory is imperative to demonstrate the immunogenicity and protective efficacy of the developed vaccine. This would involve practical assessments to ascertain the real-world effectiveness of the multi-epitope Vaccine.


Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Epitopes, T-Lymphocyte/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Molecular Docking Simulation , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Vaccine Development
2.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38655676

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
3.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582846

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Haemophilus Infections , Haemophilus parasuis , Swine Diseases , Animals , B7-H1 Antigen , Haemophilus Infections/microbiology , Haemophilus Infections/veterinary , Immunosuppression Therapy/veterinary , Phosphatidylinositol 3-Kinases , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-akt , Swine , Swine Diseases/microbiology , TOR Serine-Threonine Kinases
4.
BMJ Case Rep ; 17(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627050

Infective endocarditis (IE) caused by Haemophilus parainfluenzae is a rare but serious condition if not diagnosed and treated promptly. In this article, we describe a patient with H. parainfluenzae IE who initially presented with non-specific symptoms but subsequently developed multiple sequelae of IE. The diagnosis of IE was made based on clinical, echocardiographic, radiological and microbiological findings. He was treated successfully with a mitral valve replacement along with 4 weeks of intravenous antibiotic therapy. Our case highlights the importance of obtaining a thorough history and a complete physical examination to ensure an early diagnosis of IE.


Endocarditis, Bacterial , Endocarditis , Haemophilus Infections , Male , Humans , Haemophilus parainfluenzae , Haemophilus Infections/complications , Haemophilus Infections/diagnosis , Haemophilus Infections/drug therapy , Endocarditis, Bacterial/complications , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/drug therapy , Endocarditis/microbiology , Echocardiography
5.
J Korean Med Sci ; 39(15): e136, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38651222

BACKGROUND: Haemophilus influenzae is a frequently encountered pathogen responsible for respiratory tract infections in children. Following the detection of ceftriaxone-resistant H. influenzae at our institution, we aimed to investigate the resistance mechanisms of ceftriaxone in H. influenzae, with a particular focus on alterations in penicillin-binding protein 3 (PBP3) and ß-lactamase production. METHODS: Among H. influenzae isolates collected at Asan Medical Center Children's Hospital from March 2014 to April 2019, ceftriaxone-resistant strains by the disk-diffusion test were included. Ceftriaxone minimum inhibitory concentrations (MICs) were determined using the E-test according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The presence of ß-lactamase was assessed through cefinase test and TEM-1/ROB-1 polymerase chain reaction (PCR). PBP3 alterations were explored via ftsI gene sequencing. RESULTS: Out of the 68 collected strains, 21 exhibited resistance to ceftriaxone in disk diffusion tests. Two strains were excluded due to failed subculture. Among 19 ceftriaxone-resistant H. influenzae isolates, eighteen were non-typeable H. influenzae, and twelve were positive for TEM-1 PCR. Isolates were classified into groups II (harboring only N526K, n = 3), III (N526K+S385T, n = 2), III+ (S385T+L389F+N526K, n = 11), and III-like+ (S385T+L389F+R517H, n = 3) according to the PBP3 alteration pattern. With a median ceftriaxone MIC of 0.190 mg/L (range, 0.008-0.750), the median ceftriaxone MIC was the highest in group III-like+ (0.250 mg/L), followed by groups III+ (0.190 mg/L), III (0.158 mg/L), and II (0.012 mg/L). All three strains belonging to group II, which did not harbor the S385T substitution, had ceftriaxone MICs of ≤ 0.125 mg/L. CONCLUSION: The emergence of ceftriaxone-resistant H. influenzae with ceftriaxone MIC values of up to 0.75 mg/L was observed even in children in South Korea, with most associated with S385T and L389F substitutions. The N526K mutation alone does not significantly impact ceftriaxone resistance. Further large-scale studies are essential to investigate changes in antibiotic resistance patterns and factors influencing antibiotic resistance in H. influenzae isolated from pediatric patients in Korea.


Anti-Bacterial Agents , Ceftriaxone , Haemophilus Infections , Haemophilus influenzae , Microbial Sensitivity Tests , beta-Lactamases , Ceftriaxone/pharmacology , Haemophilus influenzae/drug effects , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/genetics , Humans , Anti-Bacterial Agents/pharmacology , Republic of Korea , beta-Lactamases/genetics , beta-Lactamases/metabolism , Child , Haemophilus Infections/microbiology , Haemophilus Infections/drug therapy , Penicillin-Binding Proteins/genetics , Child, Preschool , Drug Resistance, Bacterial , Infant , Female , Male , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Infect Immun ; 92(5): e0045323, 2024 May 07.
Article En | MEDLINE | ID: mdl-38602405

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.


Disease Models, Animal , Haemophilus Infections , Haemophilus influenzae , Influenza A virus , Otitis Media , Animals , Otitis Media/microbiology , Haemophilus influenzae/growth & development , Haemophilus influenzae/pathogenicity , Haemophilus influenzae/physiology , Haemophilus Infections/microbiology , Mice , Influenza A virus/pathogenicity , Influenza A virus/growth & development , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Humans , Animals, Newborn
7.
Hum Vaccin Immunother ; 20(1): 2342630, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38687024

Since the introduction of Haemophilus Influenzae type b (Hib) conjugate vaccines, invasive Hib disease has strongly declined worldwide, yet continued control of Hib disease remains important. In Europe, currently three different hexavalent combination vaccines containing Hib conjugates are marketed. In this phase IV, single-blind, randomized, controlled, multi-country study (NCT04535037), we aimed to compare, in a 2 + 1 vaccination schedule, the immunogenicity and safety and show non-inferiority, as well as superiority, of DTPa-HBV-IPV/Hib (Ih group) versus DTaP5-HB-IPV-Hib (Va group) in terms of anti-polyribosylribitol phosphate (PRP) antibody geometric mean concentrations (GMCs) and proportion of participants reaching anti-PRP antibody concentrations greater than or equal to a threshold of 5 µg/mL. One month after the booster vaccination, the anti-PRP antibody GMC ratio (Ih group/Va group) was 0.917 (95% CI: 0.710-1.185), meeting the non-inferiority criteria. The difference in percentage of participants (Ih group - Va group) reaching GMCs ≥5 µg/mL was -6.3% (95% CI: -14.1% to 1.5%), not reaching the predefined non-inferiority threshold. Interestingly, a slightly higher post-booster antibody avidity was observed in the Ih group versus the Va group. Both vaccines were well tolerated, and no safety concerns were raised. This study illustrates the different kinetics of the anti-PRP antibody response post-primary and post-booster using the two vaccines containing different Hib conjugates and indicates a potential differential impact of concomitant vaccinations on the anti-PRP responses. The clinical implications of these differences should be further studied.


Vaccination against Haemophilus influenzae type b (Hib) is included in the majority of national immunization programs worldwide and has shown to be effective in preventing Hib disease. In Europe, different vaccines containing Hib components are marketed. We compared the immune response and safety of 2 of these (DTPa-HBV-IPV/Hib, Ih group) and DTaP5-HB-IPV-Hib, Va group) in infants and toddlers, when used in a 2 + 1 schedule, i.e. two primary vaccination doses (at 2 and 4 months of age of the infant), followed by one booster dose at the age of one year. One month after the booster vaccination, the antibody concentration ratio between both groups (Ih group/Va group) was 0.917 (95% CI: 0.710­1.185) showing the DTPa-HBV-IPV/Hib vaccine was non-inferior to the DTaP5-HB-IPV-Hib vaccine; the difference in percentage of participants (Ih group ­ Va group) with antibody concentrations above 5 µg/mL was -6.3% (95% CI: −14.1% to 1.5%), which did not meet the pre-defined criterion for non-inferiority. In the Ih group, the quality of antibodies produced was somewhat higher versus the Va group. Both vaccines were well tolerated, and no safety concerns were raised. The kinetics of the immune response are different between the 2 vaccines. Since both vaccines contain different additional components (conjugated proteins), a possible effect of concomitant (simultaneously administered) vaccines was studied. Further investigations to confirm our findings are needed.


Antibodies, Bacterial , Haemophilus Vaccines , Haemophilus influenzae type b , Immunization Schedule , Polysaccharides , Vaccines, Combined , Vaccines, Conjugate , Humans , Haemophilus Vaccines/immunology , Haemophilus Vaccines/adverse effects , Haemophilus Vaccines/administration & dosage , Antibodies, Bacterial/blood , Infant , Female , Male , Single-Blind Method , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Haemophilus influenzae type b/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/adverse effects , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Hepatitis B Vaccines/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B Vaccines/adverse effects , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/adverse effects , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Child, Preschool , Immunogenicity, Vaccine , Europe
8.
Int J Med Microbiol ; 314: 151616, 2024 Mar.
Article En | MEDLINE | ID: mdl-38461565

Nontypeable Haemophilus influenzae (NTHi) is the dominant pathogen in several infectious diseases. Currently the use of antibiotics is the main intervention to prevent NTHi infections, however with the emergence of drug resistant strains, it has compromised the treatment of respiratory infections with antibiotics. Therefore there is an urgent need to develop a safe and effective vaccine to prevent NTHi infections. We investigate the potential of C-HapS-P6 fusion protein as a vaccine for treating NTHi in murine models. PGEX-6P2/C-HapS-P6 fusion gene was constructed using overlap extension polymerase chain reaction. The recombined plasmid was transformed into Escherichia coli for protein expression. The mice were subjected to intraperitoneal immunization using purified antigens. Immunoglobulin (Ig) G in serum samples and IgA in nasal and lung lavage fluids were analyzed using enzyme-linked immunosorbent assay. Cytokine release and proliferation capacity of splenic lymphocytes in response to antigens were measured in vitro. The protective effect of the C-HapS-P6 protein against NTHi infection was evaluated by NTHi count and histological examination. The data showed that the C-HapS-P6 fusion protein increased significantly the levels of serum IgG and nasal and lung IgA, and promoted the release of interleukin (IL)-2, interferon-ϒ, IL-4, IL-5, and IL-17 and the proliferation of splenic lymphocytes compared with C-HapS or P6 protein treatment alone. Moreover, C-HapS-P6 effectively reduced the NTHi colonization in the nasopharynx and lungs of mice. In conclusion, our results demonstrated that the C-HapS-P6 fusion protein vaccine can significantly enhance humoral and cell immune responses and effectively prevent against NTHi infection in the respiratory tract in murine models.


Haemophilus Infections , Vaccines , Mice , Animals , Haemophilus influenzae/genetics , Bacterial Outer Membrane Proteins , Immunoglobulin G , Immunoglobulin A/analysis , Anti-Bacterial Agents , Haemophilus Infections/prevention & control , Antibodies, Bacterial , Mice, Inbred BALB C
9.
Microb Pathog ; 190: 106632, 2024 May.
Article En | MEDLINE | ID: mdl-38537762

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Anti-Bacterial Agents , Biofilms , Haemophilus Infections , Haemophilus influenzae , Biofilms/growth & development , Humans , Haemophilus Infections/microbiology , Haemophilus influenzae/physiology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/genetics , Haemophilus influenzae/drug effects , Haemophilus influenzae/classification , Anti-Bacterial Agents/pharmacology , Child, Preschool , Female , Male , Child , Infant , Microbial Sensitivity Tests , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Microscopy, Electron, Scanning , Drug Resistance, Bacterial , Respiratory System/microbiology , Respiratory System/virology
10.
Eur J Clin Microbiol Infect Dis ; 43(4): 791-795, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332396

We report for the first time in Portugal a serotype c Haemophilus influenzae isolated from an adult, with HIV-1 infection. Whole-genome sequencing characterized the isolate as clonal complex ST-7, albeit with a novel MLST (ST2754) due to a unique atpG profile. Integration of this genome with other available H. influenzae serotype c genomes from PubMLST revealed its overall genetic distinctiveness, with the closest related isolate being identified in France in 2020. This surveillance study, involving collaboration among hospitals and reference laboratory, successfully contributed to the identification and characterization of this rare serotype.


Haemophilus Infections , Haemophilus influenzae , Adult , Humans , Serogroup , Haemophilus influenzae/genetics , Multilocus Sequence Typing , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Portugal/epidemiology , Serotyping
11.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38380941

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Haemophilus Infections , Haemophilus influenzae , Haemophilus , Humans , Heme/metabolism , Lung/microbiology , Iron
13.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347439

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Haemophilus Infections , Haemophilus influenzae , Child , Humans , Haemophilus Infections/microbiology , Lung/microbiology , Bronchoalveolar Lavage Fluid/microbiology , Epithelial Cells
14.
BMC Infect Dis ; 24(1): 90, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38225571

BACKGROUND: In recent decades, the prevalence of antibiotic resistance is increasing in Haemophilus influenzae (Haemophilus influenzae), which poses important challenges to global health. This research offers a comprehensive meta-analysis of the global epidemiology of multi-drug resistant (MDR) H. influenzae. METHODS: In this study, we conducted a meta-analysis based on PRISMA checklist. Electronic databases including PubMed, ISI Web of Science, Scopus, EMBASE, and Google Scholar were reviewed using keywords related to H. influenzae and antibiotic resistance. Eligible studies were selected based on stringent inclusion and exclusion criteria. Then, data from these studies were analyzed using the Comprehensive Meta-Analysis (CMA) software. RESULTS: Of 375 retrieved articles, 16 met the inclusion criteria. These studies were conducted from 2003 to 2023 and analyzed data from 19,787 clinical isolates of H. influenzae. The results showed different levels of resistance of H. influenzae to different antibiotics: ampicillin (36%), azithromycin (15.3%), ceftriaxone (1.4%), etc. The global prevalence for beta-lactamases producing H. influenzae and MDR H. influenzae was measured 34.9% and 23.1%, respectively. The prevalence rate of MDR H. influenzae was higher in Asian countries (24.6%) compared to Western regions (15.7%). MDR H. influenzae had the highest prevalence in meningitis cases (46.9%) and the lowest prevalence in acute otitis media (0.5%). CONCLUSIONS: The prevalence of MDR H. influenzae has been increasing worldwide, especially in Asian regions. This highlights the urgent need for monitoring and implementation of effective antibiotic stewardship programs globally.


Haemophilus Infections , Haemophilus influenzae , Humans , Haemophilus Infections/epidemiology , Prevalence , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases
15.
Microbiol Spectr ; 12(1): e0260123, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38054719

IMPORTANCE: Haemophilus influenzae biogroup aegyptius is a human-adapted pathogen and the causative agent of Brazilian purpuric fever (BPF), an invasive disease with high mortality, that sporadically manifests in children previously suffering conjunctivitis. Phase variation is a rapid and reversible switching of gene expression found in many bacterial species, and typically associated with outer-membrane proteins. Phase variation of cytoplasmic DNA methyltransferases has been shown to play important roles in bacterial gene regulation and can act as epigenetic switches, regulating the expression of multiple genes as part of systems called phasevarions (phase-variable regulons). This study characterized two alleles of the ModA phasevarion present in H. influenzae biogroup aegyptius, ModA13, found in non-BPF causing strains and ModA16, unique to BPF causing isolates. Phase variation of ModA13 and ModA16 led to genome-wide changes to DNA methylation resulting in altered protein expression. These changes did not affect serum resistance in H. influenzae biogroup aegyptius strains.


Conjunctivitis, Bacterial , Haemophilus Infections , Child , Humans , Haemophilus influenzae/genetics , Phase Variation , Membrane Proteins/genetics , Haemophilus Infections/microbiology , Conjunctivitis, Bacterial/microbiology
16.
Infection ; 52(1): 129-137, 2024 Feb.
Article En | MEDLINE | ID: mdl-37423969

OBJECTIVES: The objective of this study was to identify the pathogen spectrum of community acquired pneumonia in people living with HIV (PLWH), and to compare it with a matched HIV negative group in order to reassess therapeutic strategies for PLWH. METHODS: Seventy-three (n = 73) PLWH (median CD4 3-6 months before CAP: 515/µl; SD 309) with community acquired pneumonia (CAP) were matched with 218 HIV-negative CAP controls in a prospective study design. Pathogen identifications used blood culture, samples from the upper and lower respiratory tract (culture and multiplex PCR) and urinary pneumococcal and legionella antigen test. RESULTS: Although the vaccination rate among PLWH with CAP was significantly higher (pneumococcal vaccination: 27.4 vs. 8.3%, p < 0.001; influenza vaccination: 34.2 vs. 17.4%, p = 0.009), pneumococci were found most frequently as pathogen among both PLWH (n = 19/21.3%) and controls (n = 34/17.2%; p = 0.410), followed by Haemophilus influenzae (PLWH, n = 12/13.5%, vs. controls, n = 25 / 12.6%; p = 0.850). Staphylococcus aureus was found equally in 20.2 and 19.2% in PLWH and controls, but infection or colonization could not be distinguished. Mortality during 6-month follow-up was significantly higher for PLWH (5/73, or 6.8%) versus controls (3/218, or 1.4%), however with lower case numbers than previously reported. Typical HIV-associated pathogens such as Pneumocystis jirovecii were found only exceptionally. CONCLUSIONS: Our study underscores the persistent clinical burden of CAP for PLWH. From pathogen perspective, empirical antibiotic treatment for CAP in PLWH on antiretroviral therapy should cover pneumococci and Haemophilus influenzae and may be adopted from valid common recommendations.


Community-Acquired Infections , HIV Infections , Haemophilus Infections , Pneumonia, Bacterial , Humans , Pneumonia, Bacterial/epidemiology , Prospective Studies , Streptococcus pneumoniae , Anti-Bacterial Agents/therapeutic use , Haemophilus Infections/drug therapy , Haemophilus influenzae , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/drug therapy , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy
17.
Biol Pharm Bull ; 47(1): 154-158, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37880110

The prevalence of quinolone low-susceptible Haemophilus influenzae has increased in Japan. Low quinolone susceptibility is caused by point mutations in target genes; however, it can also be caused by horizontal gene transfer via natural transformation. In this study, we examined whether this horizontal gene transfer could be associated with resistance to not only quinolones but also other antimicrobial agents. Horizontal transfer ability was quantified using the experimental transfer assay method for low quinolone susceptibility. Further, the association between horizontal transfer ability and resistance to ß-lactams, the first-choice drugs for H. influenzae infection, was investigated. The transformation efficiency of 50 clinical isolates varied widely, ranging from 102 to 106 colony forming unit (CFU) of the colonies obtained by horizontal transfer assay. Efficiency was associated with ß-lactam resistance caused by ftsI mutations, indicating that strains with high horizontal transfer ability acquired quinolone low-susceptibility as well as ß-lactam resistance more easily. Strains with high transformation efficiency increased the transcript level of comA, suggesting that enhanced com operon was associated with a high DNA uptake ability. Overall, this study revealed that the transformation ability of H. influenzae was associated with multiple antimicrobial resistance. Increase in the number of strains with high horizontal transformation ability has raised concerns regarding the rapid spread of antimicrobial-resistant H. influenzae.


Anti-Infective Agents , Haemophilus Infections , Quinolones , Humans , Haemophilus influenzae/genetics , Anti-Bacterial Agents/pharmacology , Haemophilus Infections/drug therapy , Microbial Sensitivity Tests
18.
West Afr J Med ; 40(12 Suppl 1): S33, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38070126

Introduction: Haemophilus influenzae type b (Hib) causes invasive infections almost exclusively in under- fives with those aged 6-23 months being the most vulnerable. In Nigeria, it is estimated to cause nearly 400,000 annual infections and another 30,000 under-five mortality attributable to pneumonia and meningitis alone. The Hib Conjugate Vaccine (HCV) is in widespread use to combat these devastating infections. Data on its impact in Nigeria is grossly scanty. This study evaluated the seroprotection rates (SPR) of HCV and associated clinical outcomes among children aged 6-23 months in Obi L.G.A. of Nasarawa State, Nigeria. Methods: A cross-sectional study of 267 children aged 6-23 months who had completed three doses of HCV. They were enrolled via a two-staged household-level cluster sampling. Relevant sociodemographic and clinical data were obtained using structured questionnaires and serum samples collected were analysed serologically for antipolyribosylribitol phosphate (anti-PRP) antibodies using ELISA. Results: The overall SPRs against invasive Hib disease and Hib nasopharyngeal colonization were 74.2% and 26.2%, respectively. The overall geometric mean titre (GMT) of anti-PRP was 1.85 µg/mL (95%CI: 1.60-2.14) and across age groups, GMTs were >1 µg/mL-the threshold for long-term protection against invasive Hib disease. Rates/duration of healthcare admissions and average episodes of probable Hib disease syndromes were lower in seroprotected but not statistically different from non-seroprotected children. Conclusion: The demonstrated anti-PRP titres and Seroprotection Rates infer a very good HCV efficacy in Nigerian children. The lack of significant difference in clinical outcomes may be attributable to nonspecificity.


Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae type b , Hepatitis C , Child , Humans , Infant , Haemophilus Infections/epidemiology , Haemophilus Infections/prevention & control , Vaccines, Conjugate , Cross-Sectional Studies , Antibodies, Bacterial
19.
Clín. investig. ginecol. obstet. (Ed. impr.) ; 50(4): [100892], Oct-Dic, 2023. tab
Article Es | IBECS | ID: ibc-226525

Antecedentes: Cada vez son más frecuentes los informes microbiológicos con agentes emergentes en episodios clínicos del aparato genital de sujetos con sospecha de infección, como son las especies de Haemophilus no ducreyi (HND). El objetivo de este trabajo es analizar la importancia clínica del aislamiento de estas especies en el tracto genital del sexo femenino. Pacientes y métodos: Se realizó un estudio observacional descriptivo y retrospectivo en un hospital universitario del sudeste español, donde se evalúan los aislamientos de HND en muestras de exudados genitales femeninos procedentes de atención sanitaria especializada entre 2016 y 2019. Se analizaron variables clínicas, epidemiológicas y microbiológicas de los episodios infecciosos de mujeres adultas y niñas. Resultados: Se encontraron 45 (25 mujeres y 20 niñas) aislamientos de HND, correspondiendo al 1% del total, siendo la especie más frecuente Haemophilus influenzae (64,4%). En mujeres predominaron la leucorrea y el dolor abdominal, y en el 72% hubo aislamiento polimicrobiano. En niñas se aisló frecuentemente de forma aislada, con presencia de eritema vulvovaginal, flujo patológico y prurito local. Destacó la alta tasa de resistencia de Haemophilus parainfluenzae a azitromicina (72,7%) y cotrimoxazol (18,2%) en mujeres adultas, y la resistencia a azitromicina en niñas (25%). Conclusiones: H. influenzae y H.parainfluenzae deben tenerse en cuenta como posible agente etiológico en casos de vaginitis y cervicitis en mujeres adultas, así como en sospecha de enfermedad pélvica inflamatoria. En niñas, H.influenzae representa uno de los agentes microbiológicos de las infecciones vulvovaginales. La tasa de resistencia a azitromicina de H.parainfluenzae y a cotrimoxazol de ambas especies se debe tener presente.(AU)


Background: The isolation of new pathogens in clinical samples from the genital tract of subjects with suspected infection, such as Haemophilus no ducreyi (HND) species, is becoming more frequent. The objective of this work is to analyze the pathogenic role and the clinical importance of the isolation of these species in female genital tract. Patients and methods: We carried out an observational, descriptive, and retrospective study from a Hospital in Granada (Spain). HND isolates in female genital samples between 2016 and 2019 from specialized care were studied. Clinical, epidemiological, and microbiological variables of clinical episodes of adult women and girls were analyzed. Results: Forty-five (25 women and 20 girls) isolates of HND were found, corresponding to 1%; the most frequent specie was Haemophilus influenzae (64.4%). In women, leukorrhea and abdominal pain was frequent and in 72% there was a polymicrobial isolate. In girls, it was frequently in isolation, with the presence of vulvovaginal erythema, pathological discharge, and local itching. We highlight the high rate of resistance of Haemophilus parainfluenzae to azithromycin (72.7%) and cotrimoxazole (18.2%) in adult women, in contrast to resistance to azithromycin in girls (25%). Conclusions: H. influenzae and H. parainfluenzae should be considered as a possible etiological agent in cases of vaginitis and cervicitis in adult women, as well as in suspected pelvic inflammatory disease. In girls, H.influenzae represents one of the microbiological agents within the etiologies of vulvovaginal infections. We highlight the rate of resistance to azithromycin in H.parainfluenzae and to cotrimoxazole in both species.(AU)


Humans , Female , Haemophilus ducreyi/virology , Genitalia, Female/microbiology , Reproductive Tract Infections , Haemophilus Infections , Genital Diseases, Female , Epidemiology, Descriptive , Retrospective Studies , Spain , Gynecology
20.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article En | MEDLINE | ID: mdl-37958487

Enolase proteins play a significant role as moonlighting proteins. In their role as surface-associated enolase, they have multiple functions as they interact with extracellular matrix proteins. Type I and III collagens are the major constituents of this extracellular matrix, and collagen is one of the targets of interaction with the enolase of many pathogens, thereby helping the colonization process and promoting the subsequent invasion of the host. This work aimed to determine the participation of non-typeable H. influenzae enolase as a collagen-binding protein. In this study, through the use of in vitro tests it was demonstrated that recombinant enolase of non-typeable H. influenzae (rNTHiENO) strongly binds to type I collagen. Using molecular docking, the residues that could take part in the interaction of non-typeable H. influenzae enolase-type I collagen (NTHiENO-Cln I) and non-typeable H. influenzae enolase-type III collagen (NTHiENO-Cln III) were identified. However, in vitro assays show that NTHiENO has a better affinity to interact with Cln I, concerning type Cln III. The interaction of NTHiENO with collagen could play a significant role in the colonization process; this would allow H. influenzae to increase its virulence factors and strengthen its pathogenesis.


Haemophilus Infections , Haemophilus influenzae , Humans , Phosphopyruvate Hydratase/genetics , Collagen Type I , Molecular Docking Simulation , Collagen/metabolism , Extracellular Matrix/metabolism
...